US ERA ARCHIVE DOCUMENT

Tuning the Vacuum Distiller Optimizing Analyte Response and Chromatography

Michael H. Hiatt
U.S. Environmental Protection Agency
National Exposure Research Laboratory
Environmental Sciences Division
P.O. Box 93478, Las Vegas, Nevada 89193-3478

Why Tune?

- Ensure analytes are distilled and pass through the condenser
- Chromatography can seriously degrade for some analytes if too much water or methanol is introduced to the GC column
- GC/MS apparatus, injector, and column all have differing sensitivities to water and methanol that must be accommodated for best results

First Step..Build Vdist Method

- Set vacuum distillation time to 7.5 minutes (Menu->Method->Run Method)
- Set condenser cool temperature to 30 (note: the true temperature of the condenser is very likely different from the measured temperature)
- Set other method variables as in the following slides
- After verifying all variables are correct, save method as default.m and load into vacuum distiller memory by pressing

 Send and Implement

Default.m

- Pre-distillation evacuation time: 0.00 minutes (min)
- Vacuum distillation time: 7.5 min
- Transfer time (cryotrap to GC): 5 min
- Condenser temperature settings
 - Heating: 95 °C
 - Cooling: 30 °C

Default.m Part2

- Cryotrap settings
 - Cryotrapping: -150 °C
 - Desorb delay time: 0 min
 - Desorb temp: 120 °C
 - Bakeout temp: 200 °C
- Transfer line (VDU to GC) temp: 200
 °C
- Cryotrap bakeout and condenser purge: 7.0 min

Default.m Part3

- Flushing cycle
 - Pressurization time: 0.05 min
 - Evacuation time: 1.2 min
 - Number of cycles: 16

Stabilization times (Temperature)

- Condenser time: 0.1 min
- Cryotrap time: 0.3 min
- Vacuum distiller internal line temp: 95 °C
- Multiport Valve temp: 200 °C
- Autosampler lines temp: 95 °C

Step 2. Optimize Default Method to Distill ~0.3g

- Add 5 mL water (weigh) to sample vessel and attach to Port 1 (see Sample Preparation for more details)
- Perform vacuum distillation as single distillation (Menu->Run->Status-> Run) or through the Sequence Procedure (See Running Samples)
- Not necessary to run GC/MS for this step

Distillation is Complete

- If a GC/MS run is not desired abort vacuum distillation run when distillation is complete (and waiting for GC Ready) Menu->Run->Status-> Stop
- Weigh sample in container and determine water distilled
- Repeat distillation with condenser cool temperature setting lower by 10
- Continue lowering condenser cool setting until the water loss in the sample ~0.3g
- The condenser cool setting for future distillations will be that setting where ~0.3 g is distilled

Step 3. Setting the Cryotrap Desorb Temperature and the "to GC" Transfer Time

- Setting the cryotrap desorb temperature and "to GC" transfer times are critical to good analyte identification and integration
- Analyte resolution and peak shape are easily degraded if too much water or methanol are loaded on column.
- Injector type, column, and GC/MS sensitivity impact the optimal vacuum distillation method settings

The "to GC" Transfer Time and the Cryotrap Desorb Temperature are Related

- Too much water or methanol being transferred from the cryotrap to the GC degrades chromatography
- Too much water or methanol can be the result of too long of a "to GC" transfer or the cryotrap is too hot during desorb
- Too cold of a desorb temperature or too quick of a "to GC" transfer time result in incomplete transfer of analyte and poor sensitivity

Experimental evaluation of Desorb Temperature and "to GC" Transfer Time

- Surrogate compounds were distilled and transferred to GC using various cryotrap conditions
- Surrogate GC/MS responses and peak shapes were recorded
- Results were graphed as a function of experimental conditions, desorb temperature and "to GC" transfer time

Desorb Temperature and Transfer Time Impact on Analtyes-Graph

- Desorb temperature or transfer time too great
- Desorb temperature and transfer time are balanced
- Desorb temperature or transfer time too low

Note: Graph generated with prototype distiller interfaced with jet separator and will be different for other systems

Desorb Temperature and Transfer Time Impact on Analtyes

- The line connecting solid circles represents conditions that give maximum response and acceptable chromatography
- The line connecting solid boxes represents conditions that give responses half those of the maximum response line
- The line connecting stars represents conditions that give responses 1/5 those of the maximum response line
- Open circles are those conditions that resulted in poor chromatography
- Open triangles are those conditions that resulted in good chromatography

What Does the Graph Mean?

- For a large desorb temperature range there can be a "to GC" transfer time that results in good data
- For a range of transfer times there is a desorb temperature that results in good data
- Quicker "to GC" transfer times make selecting a good desorb temperature very sensitive with little room for variations
- Slower "to GC" transfer times provide a greater range of acceptable desorb temperatures

What Does the Graph Mean? Part2

- Selecting an economical "to GC" transfer time the analyst can just vary desorb temperature to "tune" the system
- The analyst should consider that >7 cryotrap volumes (~7 mL) of helium carrier gas should be passed through the trap after the cryotrap is at desorb temperature. For most circumstances a transfer time of 5 minutes is adequate
- Following slides show how "tune" severely impacts pyridine-d5 and more subtly impacts naphthalene

Desorb Temperature and Transfer Time Good Pyridine-d5

Desorb Temperature and Transfer Time Good Naphthalene-d8

Desorb Temperature or Transfer Time too Great Pyridine-d5

Desorb Temperature or Transfer Time too Great Naphthalene-d8

Desorb Temperature or Transfer Time too Low Pyridine-d5

Desorb Temperature or Transfer Time too Low Naphthalene-d8

Experiments to Determine Final "Tune"

- Multiple vacuum distillations will be performed (Surrogates in 5 mL water)
- A single "to GC" transfer time will be selected and an appropriate desorbing temperature will be assigned
- A vacuum distillation method can then be created for performing method 8261 calibrations
- See the presentation "Running Samples" for performing the actual vacuum distillations

Experiment for evaluating Desorb Temperatures

- Using method used to determine the condenser cool temperature (updated for the determined condenser setting XX), set "to GC" transfer time to 5 minutes and save as a method template (example condXX.M)
- Create a method for each desorb temperatures are 140, 120, 100, 80 (example condxxcryo140.M)
- Load 4-5mL samples (containing surrogates) on the autosampler
- Set up sequence (See Running a Sequence in the Running Samples presentation) with each sample assigned one of the new methods for desorb temperatures (example condxxcryo140.M)

Experiment for Determing Desorb Temperatures.. Evaluation

- Evaluate the GC/MS data generated by looking at profiles for pyridine-d5 and naphthalene-d8
- Compare the responses of naphthalene-d8 and pyridine-d5 and the peak shape of pyridine-d5
- If the "better" conditions are for 140 or 80 desorbing temperature perform an additional distillation 20 degrees more extreme
- Keeping in mind the graph displayed in slide 8, perform more distillations (5 deg increments) to determine the "good" range of desorb temperatures

Step 4. Done!

- The desorb temperature that provides good pyridine-d5 and good intensity (or mid-range of good desorb temperatures) is used to create the final method
- The system is now ready to create a calibration curve

Problems?

- If an acceptable desorb temperature is not found, the GC column may not be appropriate or the carrier gas flow may be outside normal.
- Verify ~0.3 grams of water are being distilled
- A series of transfer times can be analyzed for a single desorb temperature (120 or greater).
 The 5 min transfer time may not be correct for the system

